26 research outputs found

    Integration Through Separation - The Role of Lateral Membrane Segregation in Nutrient Uptake

    Get PDF
    Nutrient transporters are prominent and ubiquitous components of the plasma membrane in all cell types. Their expression and regulation are tightly linked to the cells' needs. Environmental factors such as nutrient starvation or osmotic stress prompt an acute remodeling of transporters and the plasma membrane to efficiently maintain homeostasis in cell metabolism. Lateral confinement of nutrient transporters through dynamic segregation within the plasma membrane has recently emerged as an important phenomenon that facilitates spatiotemporal control of nutrient uptake and metabolic regulation. Here, we review recent studies highlighting the mechanisms connecting the function of amino acid permeases with their endocytic turnover and lateral segregation within the plasma membrane. These findings indicate that actively controlled lateral compartmentalization of plasma membrane components constitutes an important level of regulation during acute cellular adaptations.This work was supported by the German Research Foundation (SFB944, SFB1348, and WE2750/4-1 to RW-S) and the Cellsin-Motion Cluster of Excellence (EXC1003-CiM, University of Munster to RW-S). JVB was supported by a postdoctoral fellowship from the Basque Government

    Membrane binding and insertion of the predicted transmembrane domain of human scramblase 1

    Get PDF
    AbstractHuman phospholipid scramblase 1 (SCR) was originally described as an intrinsic membrane protein catalyzing transbilayer phospholipid transfer in the absence of ATP. More recently, a role as a nuclear transcription factor has been proposed for SCR, either in addition or alternatively to its capacity to facilitate phospholipid flip-flop. Uncertainties exist as well from the structural point of view. A predicted α-helix (aa residues 288–306) located near the C-terminus has been alternatively proposed as a transmembrane domain, or as a protein core structural element. This paper explores the possibilities of the above helical segment as a transmembrane domain. To this aim two peptides were synthesized, one corresponding to the 19 α-helical residues, and one containing both the helix and the subsequent 12-residues constituting the C-end of the protein. The interaction of these peptides with lipid monolayers and bilayers was tested with Langmuir balance surface pressure measurements, proteoliposome reconstitution and analysis, differential scanning calorimetry, tests of bilayer permeability, and fluorescence confocal microscopy. Bilayers of 28 different lipid compositions were examined in which lipid electric charge, bilayer fluidity and lateral heterogeneity (domain formation) were varied. All the results concur in supporting the idea that the 288–306 peptide of SCR becomes membrane inserted in the presence of lipid bilayers. Thus, the data are in agreement with the possibility of SCR as an integral membrane protein, without rejecting alternative cell locations

    Double-tailed lipid modification as a promising candidate for oligonucleotide delivery in mammalian cells

    Get PDF
    Background The potential use of nucleic acids as therapeutic drugs has triggered the quest for oligonucleotide conjugates with enhanced cellular permeability. To this end, the biophysical aspects of previously reported potential lipid oligodeoxyribonucleotide conjugates were studied including its membrane-binding properties and cellular uptake. Methods These conjugates were fully characterized by MALDI-TOF mass spectrometry and HPLC chromatography. Their ability to insert into lipid model membrane systems was evaluated by Langmuir balance and confocal microscopy followed by the study of the internalization of a lipid oligodeoxyribonucleotide conjugate bearing a double-tail lipid modification (C28) into different cell lines by confocal microscopy and flow cytometry. This compound was also compared with other lipid containing conjugates and with the classical lipoplex formulation using Transfectin as transfection reagent. Results This double-tail lipid modification showed better incorporation into both lipid model membranes and cell systems. Indeed, this lipid conjugation was capable of inserting the oligodeoxyribonucleotide into both liquid-disordered and liquid-ordered domains of model lipid bilayer systems and produced an enhancement of oligodeoxyribonucleotide uptake in cells, even better than the effect caused by lipoplexes. In addition, in ÎČ2 integrin (CR3) expressing cells this receptor was directly involved in the enhanced internalization of this compound. Conclusions All these features confirm that the dual lipid modification (C28) is an excellent modification for enhancing nucleic acid delivery without altering their binding properties. General significance Compared to the commercial lipoplex approach, oligodeoxyribonucleotide conjugation with C28 dual lipid modification seems to be promising to improve oligonucleotide delivery in mammalian cells.This work was supported with funds from the Spanish Ministry of Economy [Grant BFU2007-62062], the Basque Government [GIV06-42], the Spanish Ministry of Education [Grant CTQ2010-20541], the Generalitat de Catalunya [2009/SGR/208], the Instituto de Salud Carlos III [CB06_01_0019] and FundaciĂłn BiofĂ­sica Bizkaia. CIBER-BBN is an iniciative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development. B.U-U. was supported by Universidad de PaĂ­s Vasco-UPV/EHU pre-doctoral fellowship and FundaciĂłn BiofĂ­sica Bizkaia. J.V.B. was a postdoctoral scientist supported by Universidad de PaĂ­s Vasco-UPV/EHU postdoctoral fellowship. The authors acknowledge the Servicio General de MicroscopĂ­a AnalĂ­tica y de Alta ResoluciĂłn en Biomedicina at the University of Basque Country for assistance with confocal microscopy, Prof. A. GĂłmez-Muñoz for flow cytometry facilities and Eneritz Bilbao for excellent technical assistance.Peer reviewe

    Accumulated bending energy elicits neutral sphingomyelinase activity in human red blood cells

    Get PDF
    We propose that accumulated membrane bending energy elicits a neutral sphingomyelinase (SMase) activity in human erythrocytes. Membrane bending was achieved by osmotic or chemical processes, and SMase activity was assessed by quantitative thin-layer chromatography, high-performance liquid chromatography, and electrospray ionization-mass spectrometry. The activity induced by hypotonic stress in erythrocyte membranes had the pH dependence, ion dependence, and inhibitor sensitivity of mammalian neutral SMases. The activity caused a decrease in SM contents, with a minimum at 6 min after onset of the hypotonic conditions, and then the SM contents were recovered. We also elicited SMase activity by adding lysophosphatidylcholine externally or by generating it with phospholipase A 2. The same effect was observed upon addition of chlorpromazine or sodium deoxycholate at concentrations below the critical micellar concentration, and even under hypertonic conditions. A unifying factor of the various agents that elicit this SMase activity is the accumulated membrane bending energy. Both hypo-and hypertonic conditions impose an increased curvature, whereas the addition of surfactants or phospholipase A 2 activation increases the outer monolayer area, thus leading to an increased bending energy. The fact that this latent SMase activity is tightly coupled to the membrane bending properties suggests that it may be related to the general phenomenon of stress-induced ceramide synthesis and apoptosis. © 2012 Biophysical Society

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Surface-active properties of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine)

    No full text
    The surface activity and interaction with lipid monolayers and bilayers of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine) have been studied. Edelfosine is a surface-active soluble amphiphile, with critical micellar concentrations at 3.5 ΌM and 19 ΌM in water. When the air-water interface is occupied by a phospholipid, edelfosine becomes inserted in the phospholipid monolayer, increasing surface pressure. This increase is dose-dependent, and reaches a plateau at ca. 2 ΌM edelfosine bulk concentration. The ether lipid can become inserted in phospholipid monolayers with initial surface pressures of up to 33 mN/m, which ensures its capacity to become inserted into cell membranes. Upon interaction with phospholipid vesicles, edelfosine exhibits a weak detergent activity, causing release of vesicle contents to a low extent (single-chain> lipids, e.g. lysophosphatidylcholine, palmitoylcarnitine, or N-acetylsphingosine. © 2007 Elsevier B.V. All rights reserved.This work was supported in part by grants from the Spanish Ministerio de EducaciĂłn y Ciencia (grant no. BFU 2005- 06095), and the University of the Basque Country (grant no. 13552/2001) (FMG), and grants SAF2005-04293 from the Spanish Ministerio de EducaciĂłn y Ciencia and FIS-FEDER 04/ 0843 from the Fondo de InvestigaciĂłn Sanitaria and European Commission (FM). J.V.B. was a predoctoral student supported by the Basque Government.Peer Reviewe

    Planning and Development Act Amendment Act, 1969, No. 59

    No full text
    The microscopic hydration of the ceramide headgroup has been determined using a combination of experimental - both NMR and neutron diffraction techniques and computational techniques - empirical potential structure refinement (EPSR) and molecular dynamics (MD). The addition of water to ceramide in chloroform solutions disrupts the chloroform solvation of the ceramide headgroup, and the water forms distinct pockets of density. Specifically, water is observed to preferentially hydrate the two hydroxyl groups and the carbonyl oxygen over the amide NH motif. Further assessment of the location and orientation of the water molecules bound to the ceramide headgroup makes it clear that the strongly solvated carbonyl moiety of the amide bond creates an anchor from which water molecules can bridge via hydrogen bonding interactions to the hydroxyl groups. Moreover, a significant difference in the hydration of the two hydroxyl groups indicates that water molecules are associated with the headgroup in such a way that they bridge between the carbonyl motif and the nearest neighbor hydroxyl group. (Figure Presented).</p

    Atomic Force Microscopy Characterization of Palmitoylceramide and Cholesterol Effects on Phospholipid Bilayers: A Topographic and Nanomechanical Study

    No full text
    Supported planar bilayers (SPBs) on mica substrates have been studied at 23 °C under atomic force microscopy (AFM)-based surface topography and force spectroscopy with two main objectives: (i) to characterize palmitoylceramide (pCer)-induced gel (L<sub>ÎČ</sub>) domains in binary mixtures with either its sphingolipid relative palmitoylsphingomyelin (pSM) or the glycerophospholipid dipalmitoylphosphorylcholine (DPPC) and (ii) to evaluate effects of incorporating cholesterol (Chol) into the previous mixtures in terms of Cer and Chol cooperation for the generation of lamellar gel (L<sub>ÎČ</sub>) phases of ternary composition. Binary phospholipid/pCer mixtures at <i>X</i><sub>pCer</sub> < 0.33 promote the generation of laterally segregated micron-sized pCer-rich domains. Their analysis at different phospholipid/pCer ratios, by means of domain thickness, roughness, and mechanical resistance to tip piercing, reveals unvarying AFM-derived features over increasing pCer concentrations. These results suggest that the domains grow in size with increasing pCer concentrations while keeping a constant phospholipid/pCer stoichiometry. Moreover, the data show important differences between pCer interactions with pSM or DPPC. Gel domains generated in pSM/pCer bilayers are thinner than the pSM-rich surrounding phase, while the opposite is observed in DPPC/pCer mixtures. Furthermore, a higher breakthrough force is observed for pSM/pCer as compared to DPPC/pCer domains, which can be associated with the preferential pCer interaction with its sphingolipid relative pSM. Cholesterol incorporation into both binary mixtures at a high Chol and pCer ratio abolishes any phospholipid/pCer binary domains. Bilayers with properties different from any of the pure or binary samples are observed instead. The data support no displacement of Chol by pCer or vice versa under these conditions, but rather a preferential interaction between the two hydrophobic lipids
    corecore